Extracellular Matrix Remodeling in Hypertension
نویسندگان
چکیده
Increases in arterial blood pressure cause cumulative changes in tissue structure and function, resulting ultimately in end-organ damage. One of the pathological hallmarks of hypertensive tissue injury is an increase in tissue fibrosis, which leads to reductions in tissue compliance and function. Fibrosis (or sclerosis) occurs as result of marked changes in the amount and composition of the extracellular matrix. This extracellular matrix is a complex mixture of structural proteins and glycoproteins, including collagens, fibronectins, and proteoglycans. Hypertension is known to be associated with increases in the synthesis of extracellular matrix proteins and changes in their degradation. These processes are mediated by several mediators, in particular the renin-angiotensin-aldosterone system. Since these changes play an important role in the formation of vascular sclerosis, cardiac dysfunction, and renal damage, understanding the mechanisms, and finding interventions to prevent or reverse these changes are clinically important. In this review we discuss the alterations in the extracellular matrix during hypertension, as well as the effects of antihypertensive agents in animal models and human patients.
منابع مشابه
Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis.
Remodeling of large and small arteries contributes to the development and complications of hypertension. The focus of this review is some of the mechanisms involved in the remodeling of small arteries in hypertension. In hypertension, changes in small artery structure are basically of 2 kinds: (1) inward eutrophic remodeling, in which outer and lumen diameters are decreased, media/lumen ratio i...
متن کاملExtracellular Matrix Remodeling in Response to Venous Hypertension: Proteomics of Human Varicose Veins
Aims: Extracellular matrix remodeling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date no systematic analysis of matrix remodeling in human veins has been performed. Methods and Results: To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting th...
متن کاملThe Sheep’s Urinary Bladder Matrix as a Potent Biological Materials Resource -an Ultrastructural Study
Background and Objectives: Biological scaffold resources composed of extracellular matrix (ECM) have been shown to make easy the practical remodeling of various tissues in both animal and human studies. The goal of current study was to make sheet form of ECM from sheep’s urinary bladder. Methods: ECM was extracted from Sheep’s urinary bladder according to standard method. Scanning electron ...
متن کاملFibronectin matrix turnover occurs through a caveolin-1-dependent process.
Extracellular matrix remodeling occurs during development, tissue repair, and in a number of pathologies, including fibrotic disorders, hypertension, and atherosclerosis. Extracellular matrix remodeling involves the complex interplay between extracellular matrix synthesis, deposition, and degradation. Factors that control these processes are likely to play key roles in regulating physiological ...
متن کاملTGF-ß1 Latency Associated Peptide Promotes Remodeling of Healing Cutaneous Wounds in the Rat
Background: The process of wound healing involves integrated events including inflammation, granulation tissue formation, matrix deposition and remodeling. Growth factors play a key role in the process. Among them transforming growth factor-ß1 (TGF-ß1) is known to accelerate tissue repair by promoting the synthesis and deposition of extracellular matrix proteins. However, persistence or overact...
متن کاملMatrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension.
For vascular remodeling in hypertension, it is essential that vascular smooth muscle cells (VSMCs) reshape in order to proliferate and migrate. The extracellular matrix (ECM) needs to be degraded to favor VSMC migration. Many proteases, including matrix metalloproteinases (MMPs), contribute to ECM proteolysis and VSMC migration. Bioactive peptides, hemodynamic forces and reactive oxygen-nitroge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004